Note (12/2015): Hi there! I'm taking some time off here to focus on other projects for a bit. As of October 2016, those other projects include a science book series for kids titled Things That Make You Go Yuck! -- available at Barnes and Noble, Amazon and (hopefully) a bookstore near you!

Co-author Jenn Dlugos and I are also doing some extremely ridiculous things over at Drinkstorm Studios, including our award-winning webseries, Magicland.

There are also a full 100 posts right here in the archives, and feel free to drop me a line at secondhandscience@gmail.com with comments, suggestions or wacky cold fusion ideas. Cheers!

· Categories: Physics
What I’ve Learned:

Double-slit experiments: where two holes make a 'whaaaat?'
“Double-slit experiments: where two holes make a ‘whaaaat?'”

Have you ever dated someone who wouldn’t make a damned decision? Where should we eat? “I dunno.” Which movie are we watching? “Whichever.” Should we get married and have kids and live happily ever after? “Meh. We’ll decide later.”

Well, that’s what the universe is like. And the double-slit experiment is one of the clearest proofs.

Think about light. Light is kind of an important part of the universe; it’s the whipped cream on the cosmic sundae. Without light, there’d be no suntans or iPads, and we’d all be stubbing our toes in the dark every time we turned around.

So light is kind of a big deal, and physicists have studied it for hundreds of years. Back in the 1600’s, Isaac Newton — he of the fabulous hair and apple-induced concussions — thought that light was made up of tiny little particles, which eventually became known as photons.

And for a hundred-plus years, the universe said, “Yeah, sure, whatever.”

Every time scientists studied light, it behaved like a beam of little particles. Up until the early 1800s, that is, when physicist Thomas Young shone light through a pair of slits in a barrier, and watched the universe get wishy-washy.

Here’s the issue: if light is made up of particles — like a stream of paintballs, say — and you fire a bunch of those at a wall with two holes in it, then you’ll end up with just two spots of paint on the other side, right behind the holes.

Also, you’ll have a very messy wall. Mom is going to be pissed.

But what if light was made up of waves? Imagine water flowing through a dam with two holes. The water would only make it through the gaps — but then it would spread out, with the ripples from each side flopping into each other, creating a network of peaks and troughs called an interference pattern. That’s the pattern Young saw in his double-slit experiment, and he proclaimed that light is composed of waves.

To which the universe replied, “Eh, maybe.”

This is where things get really goofy. First of all, it’s not just light that behaves in this waffly way; double-slit experiments work with electrons, atoms and some molecules — or basically all the stuff our toes and iPads and suntans are made of.

But worse — what happens when you push, for instance, a single electron at a wall with two slits? Why, you get a single spot on the other side, just like the damned thing was a microscopic stupid paintball.

The universe doesn’t know which tie looks better. You decide.

And if you shoot a bunch of electrons at those slits, one by one — do you get two patches of light on the other side, since those individual electrons clearly act like particles? Nope. Eventually you get the very same interference pattern you would if you opened the floodgates up front.

Now the universe is just shrugging at you. And laughing behind your back.

In many ways, double-slit experiments — both physical and thought-experiment variations like those proposed by Richard Feynman — have helped to shape modern ideas about quantum mechanics, and the probabilistic nature of reality those theories suggest.

All of which is to say, if you’re ever stuck on a really important life decision like where to live or which job to take or whether that toe you stubbed in the dark might be broken — don’t ask the universe.

It hasn’t made a damned decision in three hundred years.

Actual Science:
Florida State University / Optical Microscopy PrimerThomas Young’s double-slit experiment
University of Oregon / 21st Century ScienceTwo-slit experiments
PhysicsWorldFeynman’s double-slit experiment gets a makeover
Physics arXiv Blog / MediumPhysicists smash record for wave-particle duality
io9An experiment that might let us control events millions of years ago

Image sources: Physics World (double-slit pattern), SweetJack (splatter wall), GearCrave (“Which tie, universe?”), QuickMeme (unsure Fry [standing in for the universe])

· Write a comment
· Tags: , , , , , , , , , , ,


· Categories: Astronomy, Physics
What I’ve Learned:

Hypervelocity stars: what happens in the galaxy doesn't always stay there.
“Hypervelocity stars: what happens in the galaxy doesn’t always stay there.”

Many things move at a proverbial “million miles an hour”. Vacation days. Your heart, when a hot-bodied stranger in a swimsuit walks by. And your gossipy friends’ mouths, telling everyone how you drool over hot-bodied swimsuited strangers on your vacation.

You knew you should have never invited them to Cancun. Live and learn, gringo caliente. Live and learn.

Some things that don’t literally move that fast are stars. Sure, stars are usually clustered into galaxies, and galaxies zoom around the void at a million miles an hour or more — depending on which other bits of celestial fluff you measure them against. But the stars are just along for the ride; relative to their host galaxies, they don’t reach those insane kinds of speeds.

Except when they do.

The universe is full of exceptions — even Keanu Reeves made that one good movie once — and turbocharged stars are interesting examples. Known as hypervelocity stars, they whip around at speeds up to two million miles per hour, relative to galactic speed.

That’s like gunning a Ferrari down the highway and being overtaken by a cruise missile. Even your motormouth vacation friends can’t keep up that pace.

Hypervelocity stars are fairly new to astrophysics — predicted in 1988, and first observed in 2005. There are only a handful known to exist, mostly because confirming their speed requires measurements over a period of decades. We can’t exactly set up a speed trap and flash these things with a radar gun as they zoom past.

The really interesting thing about hypervelocity stars is that they move so fast, they can reach the escape velocity of their galaxies. Meaning, instead of swirling around in a galactic spiral forever like our boring old sun, these stars break completely free of galactic gravity and ping off into interstellar space, never to be heard from again.

(Maybe somebody could have pitched that to Keanu Reeves after the first Matrix. I’m just saying.)

What we don’t know for sure is how these stars get all hypervelocitized in the first place. But two theories explain the current observations pretty well.

It’s thought that some hypervelocity stars are formed near our galactic center, where a supermassive black hole looms. Computer models say if a binary system — two stars closely orbiting each other — got caught in the black hole’s clutches, one could be sucked in while the other is flung outward at ridiculous speed. Like a marble fired from a slingshot shot out of a cannon mounted on a jet plane. Times a lot.

The other, equally violent, theory also involves binary systems. Only in this scenario, the partner star isn’t stuffed into a black hole; instead, it goes supernova — exploding so catastrophically that it accelerates the surviving star to supergalactic speeds.

Either way, the presence of a hypervelocity star means that things went terribly, terribly wrong for that star’s old flame. So basically, if your sweetie ever tells you he or she wants to become a hypervelocity star some day, you should pack your bags and leave. Like, yesterday.

You can always take a rebound trip to Cancun. Your friends may gossip, but at least none of those swimsuited hotties are going to explode you or unceremoniously stuff you down a black hole. That kind of shit only happens in Las Vegas.

And apparently, all around the Milky Way. Stellar breakups are a bitch, yo.

Image sources: Tech Guru Daily (hypervelocity star), El Horizonte (beach bods), Oh No They Didn’t! (fast Keanu), Universe Today (binary breakup)

· Write a comment
· Tags: , , , , , , , , ,


· Categories: Astronomy, Physics
What I’ve Learned:

Exoplanets: When one Earth just isn't mega-super enough.
“Exoplanets: When one Earth just isn’t mega-super enough.”

Our planet is pretty okay, as far as it goes. Sure, we’ve come up with stir fry, chili cheese fries and Stephen Fry — but are we really being the best Earth we can be? Some astrophysicists make me wonder.

In particular, the astrophysicists scouring the visible cosmos for worlds circling other stars. Or in a word: exoplanets.

(Don’t let the “ex” part throw you. These are not planets who used to date Earth, then got upset when Earth made googly eyes with Venus, or slept over in the house of Mercury after a sexy session of grab and terrestrial tickle.

Rather, exoplanets are those big hunks of stuff that spin around a star that isn’t the one we happen to circle. Sorry, “Real Housewives of the Solar System” fans. It’s not like that.)

These world-watchers have detected nearly two thousand exoplanets to date, with more on the celestial radar all the time. And until recently, there were pretty well-defined rules for what these faraway planets look like. Basically, planets came in two flavors: rocky and gassy.

(Yes, just the two. Extrasolar planets are interesting. Nobody ever said they were Baskin-Robbins.)

When planets reach a certain size, they tend to accumulate gasses like hydrogen, helium, carbon dioxide or nitrogen. Scientists believed that any planet heavier than about ten Earth masses would largely be composed of gas pulled in by the hefty planet’s enormous gravity. The “gas giants” in our own solar system — Jupiter, Saturn, Uranus and Neptune — follow this formula precisely.

Smaller planets, on the other hand, are usually big round balls of rock. Venus, Mars and Mercury all fit this bill, in addition to the hunk of dirt we’re currently riding. As do a number of discovered exoplanets — but only those on the smaller side.

When these exoplanets are the same size-ish as Earth, they’re called “Earth-like”, but that only means that these worlds are generally the same shape and density. There’s no guarantee the inhabitants of any “Earth-like” planets have, for instance, independently invented Happy Hour or Taco Tuesday or Rice-A-Roni, the interstellar San Francisco treat.

(And without those things, how “Earth-like” could those planets be, really?)

The planets significantly bigger than Earth but smaller than our solar system’s gas planets are often called “super-Earths”. Technically, the super-Earth set is a mixture of rocky and gaseous planets, depending on the size and density of each. Like the saying goes, some super-Earths are like your Mars, and some are like Uranus.

(That’s not a saying? Well, it should be.)

The super-Earth label doesn’t mean these worlds are necessarily extra-special. It would be great if some “super”-Earth came up with even tastier chili cheese fries, or a Stephen Fry wittier than a speeding bullet. Or maybe a stir fry that stirred itself. But no. We’re on our own for those.

Recently, though, scientists discovered a new sort of planet that’s thrown them for an orbital ellipse. Named Kepler-10c, it’s a planet orbiting a star about 560 light years away. It appears to be made of rock — but its seventeen times more massive than Earth. The theory said it should be full of gas, but there it was when they looked — solid through and through, mooning us through our telescopes and thumbing its rocky core at us. Scientists have dubbed this jacked-up behemoth a “mega-Earth”, and it’s the only one of its kind yet known to exist.

Personally, I’d have gone with “Andre the Planet”. This is probably why I never get invited to any astrophysicist parties. Maybe this isn’t such a “super Earth”, after all.

Image sources: Space.com (planet parade), Metro UK (feathery Fry), Orange County Mexican Restaurants blog (Taco Simpsons) and Crustula (Andre with a whole world in his hand [a whole world in his hand])

· Write a comment
· Tags: , , , , , , , , , ,


· Categories: Physics
What I’ve Learned:

Brownian motion: even stumbling home drunk means you're doing science.
“Brownian motion: even stumbling home drunk means you’re doing science.”

Brownian motion is one of those things in science that are easy to observe, but which take an awful lot of math and fancy calculators to explain what’s happening under the hood. Much like gravity, or rainbows, or why anyone on the planet still listens to Coldplay.

In simple terms, Brownian motion describes the movement of particles floating in a liquid or gas. This motion is caused by the molecules of that liquid or gas randomly bumping into the particles, jostling them in unpredictable directions. You’re probably familiar with this process, if you’ve ever watched dust dancing on a pool of water, or tried to get out of a crowded subway car when the doors open on the opposite side.

Scientists have observed this “random walk” movement of particles for centuries; there was even an ancient Roman philosopher, Lucretius, who described it back in 60 BC. But the rest of the Romans were apparently busy inventing candles or shades or wrestling Grecos or something, and nobody thought much about wiggling little particles for another eighteen hundred years.

The first person who got back to it was a Dutch guy named Jan Ingenhousz, who in 1785 described the movement of coal dust particles in alcohol. Because that was apparently the most interesting thing he could think of doing with alcohol in 18th century Europe. I’m sure he was an absolute riot at fancy dress balls.

Scientists agreed that Ingenhousz was onto something, but nobody wanted to put a tongue-twister like “Ingenhouszian motion” into the textbooks, probably, so his contribution was mostly swept under the rug, along with his coal dust. And his party invitations.

It wasn’t until 1827 when a more reasonably-named Scottish botanist, Robert Brown, came along and stared at tiny grains of pollen skittering in water — because evidently he couldn’t get a date on Friday night, either. But at least his name was easier to spell, and scientists have called it “Brownian motion” ever since.

To be fair, Brown didn’t actually explain what was happening. He just noticed particles lurching around like those drunken bastards staggering out of ballrooms at all hours of the night, while he was stuck alone in a laboratory, squinting into microscopes and questioning his life choices.

It was another few decades before people — including Albert Einstein, naturally, because what didn’t he do? — sorted out the math behind Brownian motion, which involves a bunch of Greek letters and constants and other stuff my Fisher-Price calculator isn’t equipped to deal with. All I know is, the solutions also supported the idea of unseen tiny atoms and molecules, which wasn’t a done deal at the time. So that was progress.

Besides the squiggly pollen grains and scary maths, what does understanding Brownian motion buy us? Actually, quite a lot. Those same models and equations have been applied to improving medical imaging, helping robots auto-navigate tricky terrain, optimizing schedules in manufacturing, explaining animal herding behavior, studying stock market fluctuations and developing solutions in nanotechnology.

In fact, about the only thing the study of Brownian motion hasn’t done is to get more scientists invited to fancy dress balls.

Random staggering or no, some things in science never change.

Image sources: ETSU / Bob Gardner (Brownian motion), JG Stevenson (crowded subway), This Old Toy (Cookielator), Hypable (physicist drinking alone, aka ‘sad Raj’)

· Write a comment
· Tags: , , , , , , , , , , ,


· Categories: Chemistry, Physics
What I’ve Learned:

Transactinides: They're not heavy. They're your metals.
“Transactinides: They’re not heavy. They’re your metals.”

The transactinides are a group of fifteen elements — fundamental building blocks of matter, like carbon or hydrogen or double-sided duct tape. But transactinides are pretty special elements, in a number of ways.

First, the transactinide elements are all radioactive, which means they spontaneously split apart into other elements, releasing energy in the process. What’s more, these elements are highly volatile — even the most stable break down within about twenty-eight hours. Much like that drama major you dated back in college.

Transactinides are also the heaviest elements known to exist — and none have ever been detected in nature. We’ve only found them in the laboratory, by cramming atoms of smaller elements together until they stick for a few seconds, like some kind of chemically-unstable PB&J.

(I don’t know what a PB&J decays into, exactly. Strawberry Pop-Tarts? A jelly doughnut? Uncrustables?

This is why you don’t see many snack-related analogies in chemistry textbooks. Clearly, sandwich science is still in its infancy.)

These elements are so bleeding-edge, they don’t even get real names until they’ve been produced in a lab and the results tested and repeated. At that point, a newly “confirmed” transactinide is usually named in honor of someone important to science. Like Rutherfordium was named after physicist Ernest Rutherford, or Seaborgium for a race of Doctor Who villains, I think, or Livermorium, which was named after something a bird said in an Edgar Allen Poe poem. Science is all over the map sometimes.

But before those fancy names, the more theoretical transactinides get systematic titles to identify them. These provisional names are built from Greek and Latin roots for numbers, smooshed together like the ephemeral atomic phenomena they describe. So the element with atomic number 113, for instance, is currently called ununtrium, while the heaviest transactinide, with atomic number 118, is ununoctium.

(Nobody in science really uses these names, for two reasons. First, it’s simpler to just say “element 118”. And second, nobody wants to spend their career trying to produce something that sounds like a disease you get from licking raw chicken meat.)

While most of the periodic table is well established at this point, physical chemists still work on transactinide elements — usually trying to produce the ones not yet confirmed. Just this week, element 117 — or ununseptium, if you prefer your science Gregorian chant-style — was confirmed by a lab in Germany. It was first synthesized by a joint American-Russian team in 2010, who fired a beam of heavy calcium isotopes into a bunch of berkelium atoms to get the job done.

That was a challenge in itself. Berkelium currently only exists on this planet as the result of synthesis experiments and “nuclear incidents” — like an H-bomb test, or Chernobyl disaster.

Also, berkelium’s half life is less than a year, so if the scientists couldn’t agree quickly about how to do the experiment, the berkelium they made for it would have already turned into something else.

So basically, this marks the only time in recorded history when Americans and Russians have gotten their shit together in short order to produce something good. From sammiches to glasnost, is there anything transactinides can’t do?

Image sources: Chemicool (ununseptium), Wikipedia and Philica and Smuckers and StarTribune.com and SodaHead (PB&J decay), What Culture (Cybermen/”Seaborgmen”), GlobalResearch (Putin/Obama)

· Write a comment
· Tags: , , , , , , , , , , ,