Note (12/2015): Hi there! I'm taking some time off here to focus on other projects for a bit. As of October 2016, those other projects include a science book series for kids titled Things That Make You Go Yuck! -- available at Barnes and Noble, Amazon and (hopefully) a bookstore near you!

Co-author Jenn Dlugos and I are also doing some extremely ridiculous things over at Drinkstorm Studios, including our award-winning webseries, Magicland.

There are also a full 100 posts right here in the archives, and feel free to drop me a line at secondhandscience@gmail.com with comments, suggestions or wacky cold fusion ideas. Cheers!

· Categories: Physics
What I’ve Learned:

Gravity: what goes up... gets pretty complicated on the way down.
“Gravity: what goes up… gets pretty complicated on the way down.”

Gravity is a bitch. This is true for absent-minded skydivers jumping without their parachutes. But it’s also true for theoretical physicists. Because gravity doesn’t make much sense, and it doesn’t care who gets splatted on the ground trying to figure it out.

Gravity seems like it should easy. Everyone feels the pull of gravity — some of us more than we used to, and on body parts that have themselves “splatted” in shameful, horrifying ways. Discovering what’s underneath all that planetary tugging seems like a no-brainer.

But it is a brainer. A very big-brainer, actually.

Scientists recognize gravity as one of four fundamental forces of nature — and frankly, all four are pretty screwy. There’s the strong nuclear force, which may be mighty — but only works at scales smaller than atomic nuclei, so it’s also really tiny and sad. It’s the Rudy of universal forces.

Then there’s the weak nuclear force, which… I don’t know, holds the atoms of weak things together, maybe? Like that skinny kid in gym class, and Ikea furniture, and the Cleveland Browns. I’m just spitballing here.

Then there’s the electromagnetic force. Electromagnetism gives us light to see, radio waves to hear and microwaves to nuke our frozen burritos. It’s everywhere, and moves at the speed of light. Literally, because it is light, and various other wavelengths.

For all these forces, physicists have discovered corresponding elementary particles. Photons, for instance, which mediate the interaction of electric charges. The photons themselves are a pain to nail down — today they’re particles, tomorrow they’re waves — but at least we’ve found them. Likewise, particles called gluons carry the strong nuclear force, and W and Z bosons carry the weak force. It gets pretty complicated, but everything lines up and can all be explained by quantum mechanics.

Until you get to gravity. Because gravity is a bitch.

First of all, no one’s ever observed a particle — or wave, or aura, or Magic freaking 8-Ball — that carries gravitational force. There’s a predicted one, called a “graviton”, but we won’t be seeing those in a lab any time soon, because practical reasons.

(One estimate holds that we could detect one graviton every ten years, if we had a one hundred percent efficient detector the size of Jupiter. Which we don’t. And it only works if we put it near a neutron star, which we can’t. Also, it has to be shielded from cosmic neutrinos, which requires so much extra matter it would fall into itself and form a black hole. Which is bad.

In other words, gravitons are essentially undetectable. Eat your heart out, Higgs boson.)

We do have a shot at detecting gravitational waves, “ripples” in spacetime made up of many gravitons (if they exist) and produced by various astronomical objects. Some such waves may have been produced soon after the Big Bang, and may tell us something about the early origins of the universe. But we haven’t confirmed any discoveries yet, and interference from various electromagnetic sources on Earth make reliable detection tricky. (Stupid delicious microwave burritos.)

The other issue — theoretical gravitons or no — is you can’t jam the equations dealing with gravity into quantum physics. When you try, you wind up with infinities over here and irreconcilable differences over there and everything goes to hell. You might as well try getting Katie Holmes back together with Tom Cruise. It’s not gonna happen.

That leaves gravity as the “odd force out” — and mathematically speaking, completely separate from the rest of the universe. All sorts of strategies have been devised to pull this crazy loner back into the fold, including string theory, superstring theory and loop quantum gravity. So far, nothing (testable) has worked.

So if you’re planning to prank someone by getting them to jump out of a plane without a ‘chute, you’ve got a fair chance of convincing them gravity doesn’t really exist at all. Bonus if they’re a physicist working on quantum gravity — because at this point, they’ll probably want to jump.

Image sources: Physics Is Fun (“Curses!”), ILoveSkydiving.org (lounging jumper), CinemaSips (“Rudy! Rudy!”), Today’s Zaman (giggly Katie, tee-hee Tom)

· Write a comment
· Tags: , , , , , , , , ,


· Categories: Biology, Chemistry
What I’ve Learned:

Micelles: when the heart wants what the head hates.
“Micelles: when the heart wants what the head hates.”

Contrary to popular belief, a micelle is neither an expensive French pastry nor that nice lady currently living in the White House. Instead, a micelle is a clump of wishy-washy molecules called surfactants that can’t make the simplest decisions and probably never see any good action movies.

I’ll back up.

We have love-hate relationships with all sorts of things. Semi-sweet chocolate. That non-frozen yogurt full of bacteria that tastes like armpits. Tom Cruise.

Consider the Cruise. He makes some good movies — and a lot of okay movies — but by most accounts, he’s kind of a schmuck. Also, I think he worships Alf from that ’80s TV show; I’m not so clear on the details. The point is, your heart and your head — and any other organ you invite to the discussion — can rightfully disagree on how you feel about Tom Cruise. And they’ll disagree often, because he’s everywhere. You can’t swing a dead thetan without smacking some new movie, rerun, interview, gossip rag or ironic T-shirt featuring wee Mr. Cruise. He’s practically ubiquitous.

And that’s how surfactants feel about water, a substance almost as ubiquitous as Tom Cruise — although Waterworld really hurt its career.

(Oh, let’s face it. Water hasn’t done a really good flick since Splash. It’s been treading itself ever since.)

Back to surfactants. These are stringy little molecules with separate “head” and “tail” regions. They’re amphiphilic, which just means that one end is attracted to water (or is “hydrophilic”) and the other is repelled by water (aka, “hydrophobic”). They’re like schizophrenic Frosted Mini-Wheats, minus the wheat. And the frosting. And the talking commercial mascot.

(It’s not a perfect analogy. Breakfast cereals can only teach us so much.)

If you dropped one surfactant molecule into a pool of water, it might well go crazy. The water-hating end would flop around, trying to get away, while the water-loving side would soak it all in. All confuzzled, it might contort or explode or lock itself in its room and write awful goth poetry.

But dump a whole bunch of surfactant molecules into water, and they make a plan. The water-repelled ends huddle up and glom together, drawing the water-attracted ends around them on the outside. The result is a big ball called a micelle, with all the brave hydrophilic bits exposed to the water, and the tender hydrophobic bits safely tucked inside.

(Yes, that’s basically the plot to the second half of 300. I’m telling you, water is really clutching at straws for good ideas these days.)

So why are micelles important? Well, they’re how detergents work, for starters. Soaps can pull dirt and nasty bits that wouldn’t normally dissolve in water into the center of their micelles and carry them away. From Dawn to Tide to Irish Spring, micelles make things cleaner.

More important, micelles are critical for life. There’s a lipid bilayer forming basically a big micelle (though technically a “liposome”) around every living cell; it’s called a cell membrane, and all our important DNA and enzymes and junk would leak out without it. Smaller micelles are formed in cells to push or pull in materials, including several vitamins (A, D, E and K) that we couldn’t process otherwise. And scientists can create artificial micelles to deliver drugs into cells directly.

So the next time you feel torn about some wacko celebrity, don’t let it get to you. Tom Cruise won’t live forever (probably), and if you had the same inner conflict about water, you’d never leave the house. Or bathe. Or make a decent cup of coffee.

But micelles make wishy-washy work. And they’ve never even seen Top Gun. Respect.

Actual Science:
Elmhurst CollegeMicelles
Frontiers in PharmacologyPolymeric micelles for drug delivery
Chemistry ExplainedSoap
Idaho Milk ProductsWhat is a casein micelle?
Lab MuffinWhat is micellar water and how does it work?

Image sources: University Federico II (micelle model), DC Dental (Tom Cruise), Business Insider (weepy Mini-Wheat), Chemistry in Your Cupboard (hot detergent action)

· 2 comments
· Tags: , , , , , , , , , , , , ,